Artificial Molecules: Antibonding Molecular Ground State for Holes Revealed
نویسنده
چکیده
Semiconductor quantum dots have long been described as artificial atoms because they have discrete energy states analogous to the energy levels of natural atoms. In recent years, it has become possible to create coupled pairs of quantum dots that are analogous to natural diatomic molecules. These artificial molecules have received a great deal of attention because of the potential applications in novel optoelectronic and spintronic devices, including the possibility of scalable implementations of quantum information processing. Just as in natural diatomic molecules, tunneling of electrons or holes between the two dots creates delocalized molecular orbitals. In natural diatomic molecules the molecular ground state has bonding orbital character and the first excited molecular state has antibonding character. Artificial quantum dot molecules were believed to behave in a similar way. However, recently Dr. Doty from the University of Delaware, Dr. Climente from Universitat Jaume I (Castellon, Spain), and their collaborators in Canada and the US, have experimentally verified and explained the existence of an antibonding molecular ground state for holes in artificial quantum dot molecules. The coherent coupling of quantum dots leads to the formation of delocalized molecular orbitals that appear in photoluminescence spectra under electric fields as ant crossings. The orbital character of the molecular states cannot be measured at zero magnetic field. However, a recent discovery by Doty and coworkers at the Naval Research Lab revealed that, when a magnetic field was applied, the resonant changes in the Zeeman splitting that depended on the orbital character of the molecular states appeared. Using these changes to identify the molecular orbital character, Doty and coworkers demonstrated that the orbital character of the molecular ground state reverses as a function of the distance between the dots. Holes confined in the molecular states of dots separated by 2 nm have the expected bonding molecular ground state; when the dots are separated by three or more nanometers, the molecular ground state becomes antibonding. ‘‘This was a surprising discovery for us,’’ said Doty. ‘‘Until we looked closely at the orbital character of the molecular states we had simply assumed that the molecular ground state was always a bonding orbital.’’ To explain this surprising result, Climente and coworkers utilized a four-band k p approximation which shows that the parity along the molecular axis is broken by the spin-orbit interaction in the valence band. ‘‘This leads to the mixing of bonding and antibonding heavyand light-hole components of the spinor which destabilizes (stabilizes) the otherwise pure bonding (antibonding) states, leading to the state reversal’’ Climente told Nanospotlight. He continued explaining that the molecular ground states are found to have up to *95% antibonding character as a result of this mixing, ‘‘This is about 10 times higher than the largest value observed in natural molecules, so we can speak about a novel kind of molecular state whose properties are still to be explored’’. A spds* tight binding multimillion atom calculation was applied to probe theoretically a real case. ‘‘We considered self-assembled InGaAs/GaAs double quantum dot structures and included strain, structural asymmetries as well as vertical electric fields. The results are in qualitative agreement with the k p theory and predict a bonding-toantibonding ground state reversal at interdot distances of d * 2 nm’’ says Climente. This discovery drastically changed the previous conception of the single-particle ground state of holes in coupled quantum dots. ‘‘This paves the way for more accurate simulations of device performance for
منابع مشابه
Antibonding ground states in InAs quantum-dot molecules.
Coherent tunneling between two InAs quantum dots forms delocalized molecular states. Using magnetophotoluminescence spectroscopy we show that when holes tunnel through a thin barrier, the lowest energy molecular state has bonding orbital character. However, as the thickness of the barrier increases, the molecular ground state changes character from a bonding orbital to an antibonding orbital, c...
متن کاملGeometry Changes in Excited States
A brief discussion of the experimental methods of obtaining geometrical information about the equilibrium geometry of molecules in their electronically excited states is followed by a sampling of geometrical information available at present. The significance of simple orbital and symmetry arguments exemplified by Walsh diagrams is stressed. The geometrical tendencies of alkane excited states ar...
متن کامل3 N ov 1 99 9 Studies of the t - J two - leg ladder via series expansions
Studies of the t-J two-leg ladder via series expansions Abstract Series expansions at T = 0 are used to study properties of the half-filled t-J ladder doped with one or two holes, and at quarter filling. Dispersion curves are obtained for one-hole symmetric and antisymmetric (bonding and antibonding) excitations and for the two-hole bound state. The line in the phase diagram that separates boun...
متن کامل1 9 Se p 19 99 Studies of the t - J two - leg ladder via series expansions
Studies of the t-J two-leg ladder via series expansions Abstract Series expansions at T = 0 are used to study properties of the half-filled t-J ladder doped with one or two holes, and at quarter filling. Dispersion curves are obtained for one-hole symmetric and antisymmetric (bonding and antibonding) excitations and for the two-hole bound state. The line in the phase diagram which separates bou...
متن کاملSeries-expansion studies of the t-J two-leg ladder
Series expansions at T50 are used to study properties of the half-filled t-J ladder doped with one or two holes, and at quarter filling. Dispersion curves are obtained for one-hole symmetric and antisymmetric ~bonding and antibonding! excitations and for the two-hole bound state. The line in the phase diagram that separates bound and unbound states is determined. For quarter filling we compute ...
متن کامل